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Simplified equations of transonic gas motions and criteria of transonic 
similarity were established by K&man [I 1 and, independently, by 
Pal’kovich for irrotational motions. Ovsiannikov [2 1 has shown that the 
equations mentioned c&n be applied, within the limits of accuracy with 
regsrd to satisfying the equstions of motion 8nd the boundary conditions, 
to flows with shock waves. In Ref. !3,4 1 as well as others. boundary 
velue problems were formulated for approximate equations corresponding 
to the problem of transonic flow around a wedge-shaped profile for 
different regimes. However, comparison of the solutions obtained with 
experimental data exhibits a systematic discrepancy in the Coefficients 
of pressure resistance if the M number of the upstream flow is somewhat 
different from unity. This fact was noticed by Spreiter [5 I, who 
suggested a different method to simplify the equations of motion, and 
indicated a new similarity rule. Spreiter’s method of simplifying the 
equations is not convincing due to absence of estimates regarding the 
omitted terms in the equations of motion and in the boundary conditions. 

Proceeding by analogy to the method applied by Ovsiannikov [2 I, the 
present paper contains a simplification of the basic equations of motion 
based on the assumption that the M number of the upstream flow is close 
to unity, the velocities of the flow are only slightly different from 
the upstream velocity, and that the direction of the velocity vector is 
only slightly different from the direction of flow away from the body. 
A similarity rule is established thereby, which yields more accurate 
results in the study of flow with a passage across the speed of sound 
(transonic flows). 

1. Equations of irrotatiooal gas motions. Let us consider the equa- 
tions of irrotational motion of plane-parallel flow of an inviscid ideal 
gas: 
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Here X, y are the coordinates of the flow plane, vX, vy are the Cou- 
ponents of the velocity vector, end P is the gas densfts. 

Let V 
vY m...m?m=i--EAU, -=C’l’AJ7 

21, val 

Y 

XI-&- 
-%y, lE = x (1.2) * 

where E$, is the upstream velocity, t* is the characteristic line, f is B 
small quantity and A is a constant for a given number H, and is smaller 
than unity. 

From Bernoulli’s equation it is easifv found that 

and considering the quantity X of the order of units (1 - &,’ of the 
order of E ), we obtain, after expanding (1.3) and (1.4) in a series of 
powers of 1 - I?/v~~ and using (1.2) 

P k--l 
-=i+M,%AU-~ (1.6) 
PCXI 

E~A‘W~ + 0 (k2A2) 

;; - i t_ kM,%AU + 0 (ssA2) (1.7) 

Substitution of (1.6) end (1.2) into (1.11 gives. taking (1.5) into 
consideration: 

Letting 

we obtain the first equation (1.1) satisfied with au accuracy of r3A2 
for an arbitrery a, if 

(K+ ~j~2_~~=@ iamj 

The second equation (1.2) is satisfied exactly if 
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If we put V =I K + V, then equations (1.10) 

suuations of tranaonic flow with respect to 

The parameter a remains undetermined for 

and (1.11) will be the usual 
U’, Y. 

the time being, If we put 
q=:O,A= l/(& + l), then we obtain the approximation due to von Rarman 
[ 1 1 and Ovsiannikov [2 1. Assuming a = - k - 1, A = l/(k + 2 

obtain Spreiter’s approximation f 5 1 . 

l)W, , we 

To determine O, a supplementary condition of beat approximation of 
some gas-dymumic relation is necessary. In studying flows with a passage 
through the speed of sound, the most important condition concerns the 
best coincidence of the parabolic lines of the exact ssstems of euuations 
(1.1) with the approximate system of equations (1.10). 11.11). Thus we 
try to determine a from the condition of optimum approximation of the 

relations of the sonic line 

(1.12) 

Expressing the right-hand side of function(l.12) by means of kf, and 

using (1.2). (1.5), we obtain, taking into account that on the parabolic 

line 

(k+:)M * +E~AZK~+O(E~A~)= 0 
co 

(1.13) 

or substituting (1.9) into the right-hand term: 

a+k+f 
A - 2 (k + i) M,Z 1 + O(~vA2) = Q 

Employing (1.9) again. we obtain 

- SAzK2 
2a+- 2k+ 1 
(k + ,)icf,2 

I 
+ O(E~A~)= 0 

It is seen that equation (1% 12) is satisfied 
c7A2, if o = - k - % and, therefore, 

1 
A = ‘iz + (k + ‘iz) M,” 

with an accuracy of 

(1.14) 

As may be seen from (1.13) in Spreiter’s approximation (A = l/(k + l)k&, 
equation (1.12) is satisfied with an accuracy of C2A2, i.e. lower than if 
selecting A by formula (1.14). 

Let us find the pressure coefficient for the approximation being 
studied. As is known, 

P” &(-+) 

Using (1.7) we obtain from the above, with an accuracy of r3A2: 

$=~EAU (1.15) 
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To compare the approximation obtained with the approximation of van 
Karman and Spreiter, we calculate the pressure coefficient at the sonic 
point on the profile. 

At the sonic point U= - If and, as a consequence, taking into account 
(1.5), (1.14): 

i---M,1 

The full line on Fig. 1 shows the exact dependence of p, on U&,, the 
dotted line shows the same function evaluated on the basis of formula 
(1.16); the dashed line, on the basis of Spreiter’s approximation; and 
the dot-dash line, in accordance with approximation of von Karaan. 

I I ! I I \I ‘. 

Fig. 1. 

2. The relationships on n line of atronr dfaeontiamity. Let us clarify 
the accuracy of the approximations on a line of strong discontinuity 
under the assumption that the flow beyond it is irrotational and, as a 
consequence. the density and pressure are calculated by formulas (1.5). 
(1.7). 

The relationships on a line of strong discontinuity are of the form: 

P - Pl = Pi lf’ (Y) vu, - VXI I (v, - v*, 1 

Vtl-V us =--f’ Wfy--J 

P If'(Y) vy-- "J = Pl II’ (!I) Dy, - vql 

(k + 1) (PPI - PlP) = (k - 1) (PP - PIPl) 

Here the subscript refers to parameters before the line of strong dis- 
continuity and x = f(y) is the equation of the line of strong discon- 
t inuity. 

Substitution of (1.61, (1.71, (1.2) into the indicated relations yields 
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0 (E3A2) = 0, E1”A I(V - V,) -I- Q’ (Y) (U - U,)J = 0 

GA [K (U - U,) + ; (UZ - CT12) + w (Y) (V -V,)] + 0 (E3A2) = 0 

0 (&?AZ) = 0 

where w(Y) is determined by the relation f’(y) = c-‘@‘(Y). 

It follows that the relationships on the line of strong discontinuity 

are satisfied with an accuracy of e3A2, for the value of K if 

v - v, + w (Y) (U - U,) = 0 @.I)1 

K(U-uU1)+~(u~-U,~)+~~(Y)(v-l~,)=o (2.2) 

If we put II’ = II + K, then equations (2. l), (2.2) coincide with the 

usual relations on the line of strong discontinuity in transonic flow 

r 2 1. Eliminating @‘(Y) from equation (2.1). we obtain the equation of 

the shock polar line 

2 (1’ - V,) + (U + Ui + 2K) (U - U# = 0 (2.3) 

It should be noted that if (3.3) holds, the exact equation of the 

shock polar is satisfied with a higher accuracy than the whole system of 

relations on the line of strong discontinuity. In fact, let us write down 

the equation of the shock polar, for the sake of simplicity, in the case 

of an undisturbed flow upstream of the line of strong discontinuity: 

(2.4) 

Substitution (1.2) yields 

1 +O(E“43)=0 

Substituting A by formula (1.3): 

E”A2 a+k+l 
(k + 1) AL!,~ [2V2 + (U + 2K) Uz] -- &‘A3K (k + 1) b,,2 + 0 (~4-43) = 0 

Considering K to be of the order of unity, we see that for an arbitrarl 

selection of (1, equation (2.4) is satisfied with an accuracy of e4A3, if 

(2;3) is valid, where U1 = 0 is assumed. 

If the limitations on K are not imposed, then the same degree of 

accuracy is obtained if a = - k - 1 is selected, that is. it will be the 

same as in Spreiter’s approximation [ 5 1 . Since E is connected with the 

thickness of the profile, it indicates that in Spreiter’s approximation 

the transonic shock polar is very close to the exact Polar for arbitrary 
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numbers db, in the neighborhood of a straight jump and weak oblique jumps. 
It should be noted that in selecting A in accordance with (1.14), the 
transonic polar coincides best with the exact one in the vicinity of the 
sonic line. 

3. Problem of! flow past a profile. Let us consider the boundary condi- 
tions of flow past a profile. It is easy to see that the conditions at 

infinity take the form of: 

x=co, Y=m, u=v=o (3.1) 

and the conditions on the body 

z?g = VzT (e+ (i, (3.2) 

where f is the relative thickness of the body. 0 = e/r t a = Q/r, 8 is the 
angle of inclination of the tangent to the profile with respect to the 
chord, and a is the angle of attack. 

Substitution of (1.2) into the boundary conditions (3.21 yields 
@AL (1 - cAUfr (8 + a). Putting 

E = (T/A$” (3.3) 

we obtain the result that (3.2) is satisfied with an accuracy of t: 
5/2A2 

, 
if 

v=e+a (3.4) 

Taking into account that equations (1. lo), (I. 11). relations (2.1). 
(2.2) and boundary conditions (3.1)) (3.4) coincide in the variables 
II’ =U + K, V, X, Y with the relations in von Karman’s approximation [ 2 I, 
the results of the solution of the problem of flow past a body may be 
different in various approximations depending upon the choice of A. The 
solution, as seen from the relations enumerated above, depends on the 
transonic similarity rule K and a = ah. 

The nearsonic similarity rule, taking (3.3) into consideration. is of 
the form 

R__i -McQ” - 
(t/Aff'* 

(3.5) 

and. in particular, for transonic flows 

The aerodynamic coefficients are calculated by formulas 

where C,, C , Ca are certain integrals along the contour of the profile, 
and depend &r K, a and the shape of the profile. 

To compare the approximation corresponding to the selection of A by 
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formula (1.14). with the approximation of von Ka’rmdn, Spreiter and the 

exact theory, Fig. 3 and 3 illustrate the dependence between the semi- 

vertical wedge angle 0, and the number Mm, corresponding to cases of 
attachment of the shock wave and the passage of flow into a purely super- 

sonic regime. 

Fig. 2. Fig. 3. 

The full line indicates the exact theory, the dotted line indicates the 

approximation given here, the dashed line corresponds to gpreiter’s 

approximation, and the dot-dash line, to von K&man’s approximation. 

a7 a8 a9 t 1.3 14 

Fig. 4. Fig. 5. 

Fig. 4 contains the comparison of results of analysis of pressure 

resistance along the leading edge of the wedge-shaped profile 13.4 I on 
the basis of the approximation given here (full line), gpreiter’s 

approximations (dashed line), von K&m&' s approximation (dot-dash line) 
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with experiments [ 3 1 (circles) fox a wedge angle of 89 = 7.5’. Vertical 
lines indicate the instance of passage of the flow regime into a purely 
supersonic form. 

In conclusion, we remark that in the absence of shock waves (for 
example, in the pre-critical flow) it is possible not to introduce any 
limitations on rS,, assuming 1 = MWz to be sufficiently large a8 compared 
to the quantity t. Tn this case ff.6) takes the form: 

and equations (1.X) are satisfied with an accuracy of ,‘A’, if ff. 191, 
(1.11) are valid aad 

A ,= 1JM,2 [(k - 2) M-2 + 3j (3.7) 

Fig, 5 represents the function C = f(K), where C is determined by 
formula (3.61, for Zaminar flow pas: the wedge for pte-critical velo- 
cities 17 I. A is selected: Cl> by formula (3.71, (21 after Spreiter or 
by formula (1.141, (3) after von &h&n. The full line indicates the case 

of a wedge with a semi-angle of 5’; dashed lines, with a semi-angle of 
2.50, Since for a laminar 
the flow does not contain 
ximatfon is obtained, for 
foraula (3.7). 
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