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Simplified equations of transonic gas motions and criteria of transonic
similarity were established by Kdrmdn [1] and, independently, by

Fal’ kovich for irrotational motions. Ovsiannikov [2 ] has shown that the
equations mentioned can be applied, within the limits of accuracy with
regard to satisfying the equations of motion and the boundary conditions,
to flows with shock waves. In Ref. [3,41 as well as others, boundary
value problems were formulated for approximate equations corresponding
to the problem of transonic flow around a wedge-shaped profile for
different regimes. However, comparison of the solutions obtained with
experimental data exhibits a systematic discrepancy in the coefficients
of pressure resistance if the ¥ number of the upstream flow is somewhat
different from unity. This fact was noticed by Spreiter {51, who
suggested a different method to simplify the equations of motion, and
indicated a new similarity rule. Spreiter’s method of simplifying the
equations is not convincing due to absence of estimates regarding the
omitted terms in the equations of motion and in the boundary conditions.

Proceeding by analogy to the method applied by Ovsiannikov {217, the
present paper contains a simplification of the basic equations of motion
based on the assumption that the M number of the upstream flow is close
to unity, the velocities of the flow are only slightly different from
the upstream velocity, and that the direction of the velocity vector is
only slightly different from the direction of flow away from the body.

A similarity rule is established thereby, which yields more accurate
results in the study of flow with a passage across the speed of sound
(transonic flows).

1, Eqguations of irrotational gas motions. Let us consider the equa-
tions of irrotational motion of plane-parallel flow of an inviscid ideal
gas:
dpv ov dv
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Here z, y are the coordinates of the flow plane, Vyr Py are the com-
ponents of the velocity vector, and p is the gas density.

Let
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where v, is the upstream velocity, ! 1is the characteristic line, € is a
small quantity and A4 is a constant for a given number M and is smaller
than unity.

From Bernoulli’s equation it is easily found that
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and considering the quantity K of the order of unity (1 - ﬂ;? of the
order of €), we obtain, after expanding (1.3) and (1.4) in a series of
powers of 1 - wz/v“? and using (1.2)
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Substitution of (1.6) and (1.2) into (1.1) gives, taking (1.5) into
consideration:
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we obtain the first equation {(1.1) satisfied with an accuracy of €242
for an arbitrary e, if

Letting

A= {4.9)
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The second equation (1.2) is satisfied exactly if
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If we put U’ = K + U, then equations (1.10) and (1.11) will be the usual
equations of transonic flow with respect to U’, V.

The parameter a remains undetermined for the time being. If we put
a=0, A= 1/(k + 1), then we obtain the approximation due to von Karman
[11 and Ovsiannikxov [21]. Assuming e =- k-1, 4= 1/(k + I)KN?. we
obtain Spreiter’s approximation [5].

To determine a, a supplementary condition of best approximation of
some gas-dymamic relation is necessary. In studying flows with a passage
through the speed of sound, the most important condition concerns the
best coincidence of the parabolic lines of the exact systems of equations
(1.1) with the approximate system of equations (1.10), (1.11), Thus we
try to determine a from the condition of optimum approximation of the

relations of the sonic line
YN[
(vm ) = (vm) (1.12)

Expressing the right-hand side of function(1.12) by means of K” and
using (1.2), (1.5), we obtain, taking into account that on the parsbolic
line

%K (A—- W) + 242K + 0 (2A42) = 0 (1.13)

or substituting (1.9) into the right-hand term:

k41
2 AK? [A - 2—(5;*-_%] F0 (24 =0

Employing (1.9) again, we obtain
2a + 2k + 1
— g2 42K? [W] 4 0{fA4Y) =0
It is seen that equation (1.12) is satisfied with an accuracy of
6342, if a = — k — % and, therefore,
1
Vo + (k+ o) M2

As may be seen from (1.13) in Spreiter’'s approximation (4 = 1/(k + LI
equation (1.12) is satisfied with an accuracy of 6212. i.e. lower than if
selecting A4 by formula (1.14),

A= (1.14)

Let us find the pressure coefficient for the approximation being
studied. As is known,

W ___.2.____ P 1
pP= k‘”eoz ( Pso ha >
Using (1.7) we obtain from the above, with an accuracy of €342;

P = 26AU (1.15)
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To compare the approximation obtained with the approximation of von
Karman and Spreiter, we calculate the pressure coefficient at the sonic
point on the profile.

At the sonic point U= — K and, as a consequence, taking into account
(1.5), (1,14):
- 1—M_?
Pe =2 ({15 MigTh

(1.16)

The full line on Fig. 1 shows the exact dependence of p, on ILF the
dotted line shows the same function evaluated on the basis of formula
(1.16); the dashed line, on the basis of Spreiter’s approximation; and
the dot-dash line, in accordance with approximation of von Karman.
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2, The relationships on a line of strong discontinuity. Let us clarify
the accuracy of the approximations on a line of strong discontinuity
under the assumption that the flow beyond it is irrotational and, as a
consequence, the density and pressure are calculated by formulas (1.5),
(1.7),

The relationships on a line of strong discontinuity are of the form:

p—pi=p1lf W) v, —v, J(v,—0)
vy, —v, = —F {9 (vx-—vx‘)
Pl o, — vl = o111 )2y, — 2]
(k4 1) (pp1 — pr1p) = (k — 1) (pp — p1g1)

Here the subscript refers to parameters before the line of strong dis-
continuity and x» = f(y).is the equation of the line of strong discon-
tinuity.

Substitution of (1.6), (1.7), (1.2) into the indicated relations yields
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0(*4%) =0, €AV —V)+ & (X)(U —Uy)] =0
1
e2A [K (U —Uy)+ 5 (U= Us?) + @ (Y) (V — Vl)} +0(e34%) =0
0 (A% =0
where @’ (Y) is determined by the relation f'(y) = e~ (1),

It follows that the relationships on the line of strong discontinuity
are satisfied with an accuracy of GBAZ, for the value of K if

V—V,+ & (V) (U~Up) =0 @.1)

1
KU —Uy)+ 5 (U= Uy + & (V) (V — V) =0 (2.2)

If we put U" = U + K, then equations (2.1), (2.2) coincide with the
usual relations on the line of strong discontinuity in transonic flow
[2]). Eliminating ®(Y) from equation (2.1), we obtain the equation of
the shock polar line

2(V—=V)+ U+ U+ 2K)(U Uy = 2.3)

It should be noted that if (2.3) holds, the exact equation of the
shock polar is satisfied with a higher accuracy than the whole system of
relations on the line of strong discontinuity. In fact, let us write down
the equation of the shock polar, for the sake of simplicity, in the case
of an undisturbed flow upstream of the line of strong discontinuity:

(v, 2 9 v, a.2 v N\IrY, ,,.2
o) [ v ] == [ =] X
Substitution (1.2) yields
2| 272+ 2KU* . "
242 (ETFTYEZ;;-+J4U' + O (etA3) =0
Substituting A by formula (1.9):
3 A2 a4+ k41

m“;?[?,vz + (U +2K) U?| - €4A3K—(m + 0 (e2A%) =0

Considering K to be of the order of unity, we see that for an arbitrar)
selection of a, equation (2.4) is satisfied with an accuracy of euAB, if
(2.3) is valid, where U1 = 0 is assumed.

If the limitations on K are not imposed, then the same degree of
accuracy is obtained if a= - k— 1 is selected, that is, it will be the
same as in Spreiter's approximation [5]. Since € is connected with the
thickness of the profile, it indicates that in Spreiter’s approximation
the transonic shock polar is very close to the exact polar for arbitrary
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numbers ¥ in the neighborhood of a straight jump and weak oblique Jumps.
It should be noted that in selecting A in accordance with (1.14), the
transonic polar coincides best with the exact one in the vicinity of the
sonic line,

3. Problem of flow past a profile. Let us consider the boundary condi-
tions of flow past a profile. It is easy to see that the conditions at
infinity take the form of:

X = oo, Y = oo, U=V=0 GRS

and the conditions on the body
v,=1v,7(0+a) (3.2)

where r is the relative thickness of the body, € = 8/r, a = a/r, 8 is the
angle of inclination of the tangent to the profile with respect to the
chord, and a is the angle of attack.

Substitution of (1.2) into the boundary conditions (3.2} yields
€320y = (1 - eAldr (6 + a). Putting

€= (1/A4)h (3.3)
we obtain the result that (3.2) is satisfied with an accuracy of GS/ZAZ,
if

V=0+a (3.4)

Taking into account that equations (1.10), (1.11), relatioms (2.1),
(2.2) and boundary conditions (3.1), (3.4) coincide in the variables
U =U+ K, V, X, Y with the relations in von Karman's approximation [2 ],
the results of the solution of the problem of flow past a body may be
different in various approximations depending upon the choice of A. The
solution, as seen from the relations enumerated above, depends on the
transonic similarity rule K and a = a/r,

The nearsonic similarity rule, taking (3.3) into consideration, is of
the form

1—M_ 2
= (3.5)

(z/Ay™"

and, in particular, for transonic flows
1— M2
I O AT
The aerodynamic coefficients are calculated by formulas

C,= 2t 4l 5x* Cy = 'l 4'h Cy, C, = o g'h ﬁm (3.6)

where Cz, C., C‘ are certain integrals along the contour of the profile,
and depend on K, a and the shape of the profile.

To compare the approximation corresponding to the selection of 4 by
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formula (1.14), with the approximation of von Karmin, Spreiter and the
exact theory, Fig. 2 and 3 illustrate the dependence between the semi-
vertical wedge angle 00 and the number ¥, corresponding to cases of
attachment of the shock wave and the passage of flow into a purely super-
sonic regime.
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The full line indicates the exact theory, the dotted line indicates the
approximation given here, the dashed line corresponds to Spreiter’s
approximation, and the dot-dash line, to von Kermen's approximation.
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Fig. 4 contains the comparison of results of analysis of pressure
resistance along the leading edge of the wedge-shaped profile [3.4 1 on
the basis of the approximation given here (full line), Spreiter’s
approximations (dashed 1line), von Kdrman's approximation (dot-dash line)
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with experiments [ 6 ] (circles) for a wedge angle of GO = 7.5, Vertical
lines indicate the instance of passage of the flow regime into a purely
supersonic form.

In conclusion, we remark that in the absence of shock waves (for
example, in the pre-critical flow) it is possible not to introduce any
limitations on ¥, assuming 1 = l;? to be sufficiently large as compared
to the quantity €., In this case (1.8) takes the form:

M P {(k—2) M_? + 1]

0/og = 1+ Mo ?cAU — 5 A 4 O (347)

and equations (1.1) are satisfied with an accuracy of 6212, if (1.10),
(1.11) are valid and

A= 1M 2 (k—2) M2+ 3] 3.7

Fig. 5 represents the function Cx = f{K), where Cz is determined by
formula (3.8), for laminar flow past the wedge for pre-critical velo-
cities [7 1, 4 1s selected: (1) by formula (3.7), (2) after Spreiter or
by formula (1.14), (3) after von Kdrmdn. The full line indicates the case
of a wedge with a semi-sngle of 5%. dashed lines, with a semi-angle of
2.59, Since for a laminar flow past the wedge for pre-critical velocities
the flow does not contain either the sonic or shock waves, the best appro-
ximation is obtained, for different wedge angles, if A is determined by
formula (3.7),
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